A Neural Network Model for Low-Resource Universal Dependency Parsing
نویسندگان
چکیده
Accurate dependency parsing requires large treebanks, which are only available for a few languages. We propose a method that takes advantage of shared structure across languages to build a mature parser using less training data. We propose a model for learning a shared “universal” parser that operates over an interlingual continuous representation of language, along with language-specific mapping components. Compared with supervised learning, our methods give a consistent 8-10% improvement across several treebanks in low-resource simulations.
منابع مشابه
Universal Dependencies Parsing for Colloquial Singaporean English
Singlish can be interesting to the ACL community both linguistically as a major creole based on English, and computationally for information extraction and sentiment analysis of regional social media. We investigate dependency parsing of Singlish by constructing a dependency treebank under the Universal Dependencies scheme, and then training a neural network model by integrating English syntact...
متن کاملCross-lingual Transfer for Unsupervised Dependency Parsing Without Parallel Data
Cross-lingual transfer has been shown to produce good results for dependency parsing of resource-poor languages. Although this avoids the need for a target language treebank, most approaches have still used large parallel corpora. However, parallel data is scarce for low-resource languages, and we report a new method that does not need parallel data. Our method learns syntactic word embeddings ...
متن کاملA Novel Neural Network Model for Joint POS Tagging and Graph-based Dependency Parsing
We present a novel neural network model that learns POS tagging and graph-based dependency parsing jointly. Our model uses bidirectional LSTMs to learn feature representations shared for both POS tagging and dependency parsing tasks, thus handling the feature-engineering problem. Our extensive experiments, on 19 languages from the Universal Dependencies project, show that our model outperforms ...
متن کاملAn improved joint model: POS tagging and dependency parsing
Dependency parsing is a way of syntactic parsing and a natural language that automatically analyzes the dependency structure of sentences, and the input for each sentence creates a dependency graph. Part-Of-Speech (POS) tagging is a prerequisite for dependency parsing. Generally, dependency parsers do the POS tagging task along with dependency parsing in a pipeline mode. Unfortunately, in pipel...
متن کاملCross-Lingual Dependency Parsing with Late Decoding for Truly Low-Resource Languages
In cross-lingual dependency annotation projection, information is often lost during transfer because of early decoding. We present an end-to-end graph-based neural network dependency parser that can be trained to reproduce matrices of edge scores, which can be directly projected across word alignments. We show that our approach to cross-lingual dependency parsing is not only simpler, but also a...
متن کامل